Groups in which the normaliser of every element except identity is abelian
نویسندگان
چکیده
منابع مشابه
Modules for which every non-cosingular submodule is a summand
A module $M$ is lifting if and only if $M$ is amply supplemented and every coclosed submodule of $M$ is a direct summand. In this paper, we are interested in a generalization of lifting modules by removing the condition"amply supplemented" and just focus on modules such that every non-cosingular submodule of them is a summand. We call these modules NS. We investigate some gen...
متن کاملthe crisis of identity in jhumpa lahiris fiction: interpreter of maladies and the namesake
شکل گیری هویت(identity) مقوله مهمی در ادبیات پراکنده مردم(diasporan literature) می باشد. آثار جومپا لاهیری(jhumpa lahiri) ، نویسنده هندی آمریکایی، در سالهای اخیر تحسین منتقدین را به خود معطوف کرده است. وی در این آثار زندگی مهاجران و تلاش آنان برای پیدا کردن جایگاهشان در یک فرهنگ بیگانه را به تصویر کشیده است. این تجربه همواره با احساساتی نظیر دلتنگی برای گذشته، بیگانگی و دوری همراه است. با این ح...
15 صفحه اولRings for which every simple module is almost injective
We introduce the class of “right almost V-rings” which is properly between the classes of right V-rings and right good rings. A ring R is called a right almost V-ring if every simple R-module is almost injective. It is proved that R is a right almost V-ring if and only if for every R-module M, any complement of every simple submodule of M is a direct summand. Moreover, R is a right almost V-rin...
متن کاملGroups in which every subgroup has finite index in its Frattini closure
In 1970, Menegazzo [Gruppi nei quali ogni sottogruppo e intersezione di sottogruppi massimali, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 48 (1970), 559--562.] gave a complete description of the structure of soluble $IM$-groups, i.e., groups in which every subgroup can be obtained as intersection of maximal subgroups. A group $G$ is said to have the $FM$...
متن کاملJacek Kabziński ABELIAN GROUPS AND IDENTITY CONNECTIVE
In 1937 M.H. Stone showed (see [9]) that natural semantics for one of the most important classical consequences – classical equivalential consequence – is two element Abelian group, more generally, the class of Abelian groups of the second order, i.e. groups wherein the converse element for a given element is the same element (given element is a converse element for itself). Due to Stone’s resu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the American Mathematical Society
سال: 1925
ISSN: 0002-9904
DOI: 10.1090/s0002-9904-1925-04079-3